## Transformation Formulas of $p$-adic Hypergeometric Functions

Wang Chung-Hsuan

Department of Mathematics
National Cheng Kung University

TMS Annual Meeting 2021

## Table of Contents

(1) $p$-adic hypergeometric functions

- Dwork's p-adic hypergeometric functions $\mathscr{F}_{a_{1}, \cdots, a_{s}}^{D w}(t)$
- p-adic hypergeometric functions of logarithmic type $\mathscr{F}_{a_{1}, \ldots, a_{s}}^{(\sigma)}(t)$
- $p$-adic hypergeometric functions $\widehat{\mathscr{F}}_{a, \ldots, a}^{(\sigma)}(t)$
(2) Transformation Formulas of $p$-adic Hypergeometric Functions
- Conjectures
- Case : $s=1$
- Case : $s=2$


## Table of Contents

(1) $p$-adic hypergeometric functions

- Dwork's p-adic hypergeometric functions $\mathscr{F}_{a_{1}, \cdots, a_{s}}^{D w}(t)$
- p-adic hypergeometric functions of logarithmic type $\mathscr{F}_{a_{1}, \ldots, a_{s}}^{(\sigma)}(t)$
- $p$-adic hypergeometric functions $\widehat{\mathscr{F}}_{a, \ldots, a}^{(\sigma)}(t)$
(2) Transformation Formulas of $p$-adic Hypergeometric Functions
- Conjectures
- Case : $s=1$
- Case : $s=2$


## Dwork's $p$-adic hypergeometric functions $\mathscr{F}_{a}^{D w}(t)$

Let $s \geq 1$ be an integer.
For a s-tuple $\underline{a}=\left(a_{1}, \ldots, a_{s}\right) \in \mathbb{Z}_{p}^{s}$ of $p$-adic integers, let

$$
F_{\underline{a}}(t)=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k}}{k!} \cdots \frac{\left(a_{s}\right)_{k}}{k!} t^{k}
$$

be the $p$-adic hypergeometric power series where

$$
(\alpha)_{k}=\alpha(\alpha+1) \cdots(\alpha+k-1) \quad \text { when } \quad k \geq 1 \text { and } \quad(\alpha)_{0}=1
$$

Let $a^{\prime}:=(a+I) / p$ where $I \in\{0,1, \ldots, p-1\}$ is the unique integer such that $a+I \equiv 0 \bmod p\left(a^{\prime}\right.$ is called the Dwork prime of $\left.a\right)$.

Let $a^{\prime}:=(a+I) / p$ where $I \in\{0,1, \ldots, p-1\}$ is the unique integer such that $a+I \equiv 0 \bmod p\left(a^{\prime}\right.$ is called the Dwork prime of $\left.a\right)$.

## Example

Let $p=5$. We have

$$
1^{\prime}=1,\left(\frac{1}{2}\right)^{\prime}=\frac{\frac{1}{2}+2}{5}=\frac{1}{2} \text { and }\left(\frac{1}{3}\right)^{\prime}=\frac{\frac{1}{3}+3}{5}=\frac{2}{3} .
$$

Similarly, the $i$-th Dwork prime $a^{(i)}$ is defined by $a^{(i)}=\left(a^{(i-1)}\right)^{\prime}$ and $a^{(0)}=a$.

Put $\underline{a^{\prime}}=\left(a_{1}^{\prime}, \cdots, a_{s}^{\prime}\right)$.

## Definition

The Dwork's p-adic hypergeometric function is defined to be

$$
\mathscr{F}_{\underline{a}}^{D w}(t)=F_{\underline{a}}(t) / F_{\underline{a^{\prime}}}\left(t^{p}\right) .
$$

$$
\text { Put } \underline{a^{\prime}}=\left(a_{1}^{\prime}, \cdots, a_{s}^{\prime}\right)
$$

## Definition

The Dwork's p-adic hypergeometric function is defined to be

$$
\mathscr{F}_{\underline{a}}^{D w}(t)=F_{\underline{\mathbf{a}}}(t) / F_{\underline{a^{\prime}}}\left(t^{p}\right) .
$$

## Example

Taking $a_{1}=\cdots=a_{s}=1$, we have

$$
\mathscr{F}_{\underline{a}}^{D w}(t)=F_{1, \cdots, 1}(t) / F_{1, \cdots, 1}\left(t^{p}\right)=\frac{\sum t^{n}}{\sum t^{p n}}=\frac{\frac{1}{1-t}}{\frac{1}{1-t^{p}}}=1+t+\cdots+t^{p-1} .
$$

## Congruence relations

Dwork's $p$-adic hypergeometric functions satisfy congruence relations.

## Theorem (Dwork)

We have

$$
\mathscr{F}_{\underline{a}}^{D w}(t) \equiv \frac{F_{\underline{a}}(t)_{<p^{n}}}{\left[F_{\underline{a^{\prime}}}\left(t^{p}\right)\right]_{<p^{n}}} \quad \bmod p^{n} \mathbb{Z}_{p}[[t]]
$$

where $f(t)_{<m}:=\sum_{n<m} A_{n} t^{n}$ is the truncated polynomial for a power series $f(t)=\sum_{n=0}^{\infty} A_{n} t^{n}$.

## Example

Taking $a_{1}=\cdots=a_{s}=1$, we have

$$
\begin{aligned}
\frac{F_{1, \cdots, 1}(t)_{<p}}{F_{1, \cdots, 1}\left(t^{p}\right)_{<p}} & =\frac{\left(1+t+t^{2}+\cdots\right)_{<p}}{\left(1+t^{p}+t^{2 p}+\cdots\right)_{<p}} \\
& =1+t+\cdots+t^{p-1} \equiv \mathscr{F}_{1, \cdots, 1}^{D w}(t) \quad \bmod p
\end{aligned}
$$

## Example

Taking $a_{1}=\cdots=a_{s}=1$, we have

$$
\begin{aligned}
\frac{F_{1, \cdots, 1}(t)_{<p}}{F_{1, \cdots, 1}\left(t^{p}\right)_{<p}} & =\frac{\left(1+t+t^{2}+\cdots\right)_{<p}}{\left(1+t^{p}+t^{2 p}+\cdots\right)_{<p}} \\
& =1+t+\cdots+t^{p-1} \equiv \mathscr{F}_{1, \cdots, 1}^{D w}(t) \quad \bmod p
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{F_{1, \cdots, 1}(t)_{<p^{2}}}{F_{1, \cdots, 1}\left(t^{p}\right)_{<p^{2}}} & =\frac{1+t+\cdots+t^{p^{2}-1}}{1+t^{p}+t^{2 p}+\cdots+t^{p(p-1)}} \\
& =\frac{\frac{t^{p^{2}-1}}{t-1}}{\frac{t^{p^{2}-1}}{t^{p}-1}}=1+t+\cdots+t^{p-1} \equiv \mathscr{F}_{1, \cdots, 1}^{D w}(t) \quad \bmod p^{2}
\end{aligned}
$$

From Dwork's congruence relation, we have
where

$$
f(t):=\prod_{i=0}^{N} F_{a_{1}^{(i)}, \ldots, a_{s}^{(i)}}(t)_{<p}
$$

and $N$ is an integer such that $\underline{a}^{(N)}=\underline{a}$.

## Special values of $\mathscr{F}_{a}^{\mathrm{Dw}}(t)$

Let $\mathbb{C}_{p}=\widehat{\widehat{\mathbb{Q}_{p}}}$ and $\mathcal{O}_{\mathbb{C}_{p}}:=\left\{|x|_{p} \leq 1\right\}$ the valuation ring and $m:=\left\{|x|_{p}<1\right\}$ the maximal ideal.

## Special values of $\mathscr{F}_{a}^{\mathrm{Dw}}(t)$

Let $\mathbb{C}_{p}=\widehat{\widehat{\mathbb{Q}_{p}}}$ and $\mathcal{O}_{\mathbb{C}_{p}}:=\left\{|x|_{p} \leq 1\right\}$ the valuation ring and $m:=\left\{|x|_{p}<1\right\}$ the maximal ideal.

For $\alpha \in \mathcal{O}_{\mathbb{C}_{p}}$ satisfying

$$
F_{\underline{a}^{\prime}}(\alpha)_{<p^{n}} \not \equiv 0 \quad \bmod m, \forall n,
$$

the special value $\mathscr{F}_{\underline{a}}^{\mathrm{Dw}}(\alpha)$ is defined to be

$$
\lim _{n \rightarrow \infty}\left(\left.\frac{F_{\underline{a}}(t)_{<p^{n}}}{F_{{\underline{a^{\prime}}}^{\prime}}\left(t^{p}\right)_{<p^{n}}}\right|_{t=\alpha}\right) .
$$

## Geometric aspect of $\mathscr{F}_{a_{1}, \cdots, a_{s}}^{D w}(t)$

Dwork showed a geometric aspect of his $p$-adic hypergeometric functions by his unit root formula.

## Theorem (unit root formula)

For a smooth ordinary elliptic curve

$$
E_{\alpha}: y^{2}=x(1-x)(1-\alpha x)
$$

over $\mathbb{F}_{p}$, the unit root $\epsilon_{p}$ of $E_{\alpha}$ satisfies

$$
\epsilon_{p}=(-1)^{\frac{p-1}{2}} \mathscr{F}_{\frac{1}{2}, \frac{1}{2}}^{D w}(\widehat{\alpha})
$$

where $\widehat{\alpha} \in \mathbb{Z}_{p}^{\times}$is the Teichmü/ler lift of $\alpha \in \mathbb{F}_{p}^{\times}$.
Unit root is the root of $x^{2}-a_{p} x+p$ which is unit $\left(a_{p}:=\# E\left(\mathbb{F}_{p}\right)-p-1\right)$.

## $p$-adic hypergeometric functions of logarithmic type $\mathscr{F}_{a_{1}, \cdots, a_{s}}^{(\sigma)}(t)$

Let $W=W\left(\overline{\mathbb{F}}_{p}\right)$ denote the Witt ring, and $K=F r a c W$ its fractional field.

## p-adic hypergeometric functions of logarithmic type

 $\mathscr{F}_{a_{1}, \cdots, a_{s}}^{(\sigma)}(t)$Let $W=W\left(\overline{\mathbb{F}}_{p}\right)$ denote the Witt ring, and $K=\operatorname{Frac} W$ its fractional field.
Let $\sigma: W[[t]] \rightarrow W[[t]]$ be a $p$-th Frobenius given by $\sigma(t)=c t^{p}$ with $c \in 1+p W$ :

$$
\left(\sum_{i} a_{i} t^{i}\right)^{\sigma}=\sum_{i} a_{i}^{F} c^{i} t^{i p}
$$

where $F: W \rightarrow W$ is the Frobenius on $W$.

Define $p$-adic digamma function

$$
\psi_{p}(z):=-\gamma_{p}+\lim _{n \in \mathbb{Z}>0, n \rightarrow z} \sum_{1 \leq k<n, p \nmid k} \frac{1}{k}
$$

where $\gamma_{p}$ is

$$
-\lim _{s \rightarrow \infty} \frac{1}{p^{s}} \sum_{0 \leq j<p^{s}, p \nmid j} \log (j), \quad(\log =\text { Iwasawa } \log )
$$

## Definition (M. Asakura)

We define

$$
\begin{aligned}
\mathscr{F}_{\underline{a}}^{(\sigma)}(t)=\frac{G_{\underline{a}}(t)}{F_{\underline{a}}(t)}=\frac{1}{F_{\underline{a}}(t)}\left[\psi_{p}\left(a_{1}\right)+\cdots+\right. & \psi_{p}\left(a_{s}\right)+s \gamma_{p}-p^{-1} \log (c) \\
& \left.+\int_{0}^{t}\left(F_{\underline{a}}(t)-F_{\underline{a^{\prime}}}\left(t^{\sigma}\right)\right) \frac{d t}{t}\right]
\end{aligned}
$$

## Definition (M. Asakura)

We define

$$
\begin{aligned}
\mathscr{F}_{\underline{a}}^{(\sigma)}(t)=\frac{\underline{G}_{\underline{a}}(t)}{F_{\underline{a}}(t)}=\frac{1}{F_{\underline{a}}(t)}\left[\psi_{p}\left(a_{1}\right)+\cdots+\right. & \psi_{p}\left(a_{s}\right)+s \gamma_{p}-p^{-1} \log (c) \\
& \left.+\int_{0}^{t}\left(F_{\underline{a}}(t)-F_{\underline{a^{\prime}}}\left(t^{\sigma}\right)\right) \frac{d t}{t}\right]
\end{aligned}
$$

Here we think $\int_{0}^{t}(-) \frac{d t}{t}$ to be a operator such that

$$
\int_{0}^{t} t^{\alpha} \frac{d t}{t}=\frac{t^{\alpha}}{\alpha}, \quad \alpha \neq 0
$$

Write $F_{\underline{a}}(t)=\sum A_{k} t^{k}, F_{\underline{a}^{\prime}}(t)=\sum A_{k}^{(1)} t^{k}$ and $G_{\underline{a}}(t)=\sum B_{k} t^{k}$.

Write $F_{\underline{a}}(t)=\sum A_{k} t^{k}, F_{\underline{a}^{\prime}}(t)=\sum A_{k}^{(1)} t^{k}$ and $G_{\underline{a}}(t)=\sum B_{k} t^{k}$.
Then for $k \in \mathbb{Z}_{\geq 0}$, we have

$$
B_{0}=\psi_{p}\left(a_{1}\right)+\cdots+\psi_{p}\left(a_{s}\right)+s \gamma_{p}-p^{-1} \log (c), \quad B_{k}=\frac{A_{k}-c^{k / p} A_{k / p}^{(1)}}{k}
$$

where $A_{\frac{m}{p}}^{(1)}=0$ if $m \not \equiv 0 \bmod p$ or $m<0$.

Write $F_{\underline{a}}(t)=\sum A_{k} t^{k}, F_{\underline{a}^{\prime}}(t)=\sum A_{k}^{(1)} t^{k}$ and $G_{\underline{a}}(t)=\sum B_{k} t^{k}$.
Then for $k \in \mathbb{Z}_{\geq 0}$, we have

$$
B_{0}=\psi_{p}\left(a_{1}\right)+\cdots+\psi_{p}\left(a_{s}\right)+s \gamma_{p}-p^{-1} \log (c), \quad B_{k}=\frac{A_{k}-c^{k / p} A_{k / p}^{(1)}}{k}
$$

where $A_{\frac{m}{p}}^{(1)}=0$ if $m \not \equiv 0 \bmod p$ or $m<0$.
These $p$-adic hypergeometric functions of logarithmic type also satisfy congruence relations.

## Theorem (M. Asakura)

Suppose that $a_{i} \notin \mathbb{Z}_{\leq 0}$ for all $i$. If $c \in 1+2 p W$, then for all $n \geq 1$

$$
\mathscr{F}_{\underline{a}}^{(\sigma)}(t) \equiv \frac{G_{\underline{a}}(t)_{<p^{n}}}{F_{\underline{a}}(t)_{<p^{n}}} \quad \bmod p^{n} W[[t]] .
$$

If $p=2$ and $c \in 1+2 W$, then the above formula holds for modulo $p^{n-1}$.

## Geometric aspect of $\mathscr{F}_{a_{1}, \ldots, a_{s}}^{(\sigma)}(t)$

## Theorem (Asakura)

Suppose that $p>2$ is prime to NM. Let $F: z^{N}+w^{M}=1$ be the Fermat curve over W. Let

$$
\operatorname{reg}_{\mathrm{syn}}: K_{2}(F) \otimes \mathbb{Q} \rightarrow H_{\mathrm{syn}}^{2}\left(F, \mathbb{Q}_{p}(2)\right) \cong H_{\mathrm{dR}}^{1}(F / K)
$$

be the syntomic regulator map and let $A(i, j) \in K$ be defined by

$$
\operatorname{reg}_{\text {syn }}(\{1-z, 1-w\})=\sum_{(i, j) \in I} A^{(i, j)} M^{-1} z^{i-1} w^{j-M} d z
$$

Suppose that $(i, j) \in I$ satisfies $(i) \frac{i}{N}+\frac{j}{M}<1, \quad$ (ii) $F_{\frac{i}{N}, \frac{j}{M}}(1)_{<p^{n}} \equiv 0$ $\bmod p, \forall n \geq 1$. Then we have

$$
A^{(i, j)}=\mathscr{F}_{\frac{i}{N}, \frac{j}{M}}^{(\sigma)}(1) \quad \text { where } \quad \sigma(t)=t^{p}
$$

## $p$-adic Hypergeometric Functions $\widehat{\mathscr{F}}_{a}^{(\sigma, \ldots, a}(t)$

For $a \in \mathbb{Z}_{p}$, we write

$$
F_{a, \ldots, a}(t)=\sum_{k=0}^{\infty}\left(\frac{(a)_{k}}{k!}\right)^{s} t^{k}, \quad F_{a^{\prime}, \ldots, a^{\prime}}(t)=\sum_{k=0}^{\infty}\left(\frac{\left(a^{\prime}\right)_{k}}{k!}\right)^{s} t^{k} .
$$

## $p$-adic Hypergeometric Functions $\widehat{\mathscr{F}}_{a}^{(\sigma, \ldots, a}(t)$

For $a \in \mathbb{Z}_{p}$, we write

$$
F_{a, \ldots, a}(t)=\sum_{k=0}^{\infty}\left(\frac{(a)_{k}}{k!}\right)^{s} t^{k}, \quad F_{a^{\prime}, \ldots, a^{\prime}}(t)=\sum_{k=0}^{\infty}\left(\frac{\left(a^{\prime}\right)_{k}}{k!}\right)^{s} t^{k} .
$$

Put

$$
q:= \begin{cases}4 & p=2 \\ p & p \geq 3\end{cases}
$$

## $p$-adic Hypergeometric Functions $\widehat{\mathscr{F}}_{2}(, \ldots, a(t)$

For $a \in \mathbb{Z}_{p}$, we write

$$
F_{a, \ldots, a}(t)=\sum_{k=0}^{\infty}\left(\frac{(a)_{k}}{k!}\right)^{s} t^{k}, \quad F_{a^{\prime}, \ldots, a^{\prime}}(t)=\sum_{k=0}^{\infty}\left(\frac{\left(a^{\prime}\right)_{k}}{k!}\right)^{s} t^{k} .
$$

Put

$$
q:= \begin{cases}4 & p=2 \\ p & p \geq 3\end{cases}
$$

Let $I^{\prime} \in\{0,1, \ldots, q-1\}$ be the unique integer such that $a+I^{\prime} \equiv 0$ $\bmod q$.

## p-adic Hypergeometric Functions $\widehat{\mathscr{F}}_{a}^{(\sigma, \ldots, a}(t)$

For $a \in \mathbb{Z}_{p}$, we write

$$
F_{a, \ldots, a}(t)=\sum_{k=0}^{\infty}\left(\frac{(a)_{k}}{k!}\right)^{s} t^{k}, \quad F_{a^{\prime}, \ldots, a^{\prime}}(t)=\sum_{k=0}^{\infty}\left(\frac{\left(a^{\prime}\right)_{k}}{k!}\right)^{s} t^{k} .
$$

Put

$$
q:= \begin{cases}4 & p=2 \\ p & p \geq 3\end{cases}
$$

Let $I^{\prime} \in\{0,1, \ldots, q-1\}$ be the unique integer such that $a+I^{\prime} \equiv 0$ $\bmod q$. Put

$$
e:=I^{\prime}-\left\lfloor\frac{I^{\prime}}{p}\right\rfloor .
$$

## Definition

We define

$$
\begin{aligned}
\widehat{G}_{a, \ldots, a}^{(\sigma)}(t) & :=t^{-a} \int_{0}^{t}\left(t^{a} F_{a, \ldots, a}(t)-(-1)^{s e}\left[t^{a^{\prime}} F_{a^{\prime}, \ldots, a^{\prime}}(t)\right]^{\sigma}\right) \frac{d t}{t} \\
& =\sum_{k=0}^{\infty} \widehat{B}_{k} t^{k} \quad \text { for } a \in \mathbb{Z}_{p} \backslash \mathbb{Z}_{\leq 0} .
\end{aligned}
$$

## Definition

We define

$$
\begin{aligned}
\widehat{G}_{a, \ldots, a}^{(\sigma)}(t) & :=t^{-a} \int_{0}^{t}\left(t^{a} F_{a, \ldots, a}(t)-(-1)^{s e}\left[t^{a^{\prime}} F_{a^{\prime}, \ldots, a^{\prime}}(t)\right]^{\sigma}\right) \frac{d t}{t} \\
& =\sum_{k=0}^{\infty} \widehat{B}_{k} t^{k} \quad \text { for } a \in \mathbb{Z}_{p} \backslash \mathbb{Z}_{\leq 0} .
\end{aligned}
$$

## Definition

We define

$$
\widehat{\mathscr{F}}_{a, \ldots, a}^{(\sigma)}(t):=\frac{\widehat{G}_{a, \ldots, a}^{(\sigma)}(t)}{F_{a, \ldots, a}(t)}, \quad a \in \mathbb{Z}_{p} \backslash \mathbb{Z}_{\leq 0} .
$$

## Definition

We define

$$
\begin{aligned}
\widehat{G}_{a, \ldots, a}^{(\sigma)}(t) & :=t^{-a} \int_{0}^{t}\left(t^{a} F_{a, \ldots, a}(t)-(-1)^{s e}\left[t^{a^{\prime}} F_{a^{\prime}, \ldots, a^{\prime}}(t)\right]^{\sigma}\right) \frac{d t}{t} \\
& =\sum_{k=0}^{\infty} \widehat{B}_{k} t^{k} \quad \text { for } a \in \mathbb{Z}_{p} \backslash \mathbb{Z}_{\leq 0}
\end{aligned}
$$

## Definition

We define

$$
\widehat{\mathscr{F}}_{a, \ldots, a}^{(\sigma)}(t):=\frac{\widehat{G}_{a, \ldots, a}^{(\sigma)}(t)}{F_{a, \ldots, a}(t)}, \quad a \in \mathbb{Z}_{p} \backslash \mathbb{Z}_{\leq 0} .
$$

Write $F_{a, \ldots, a}(t)=\sum A_{k} t^{k}$ and $F_{a^{\prime}, \ldots, a^{\prime}}(t)=\sum A_{k}^{(1)} t^{k}$. Then we have

$$
\widehat{B}_{k}=\frac{1}{k+a}\left(A_{k}-(-1)^{s e}\left(A_{\frac{k-1}{p}}^{(1)}\right) c^{\frac{k+a}{p}}\right)
$$

## Congruence Relations for $\widehat{\mathscr{F}}_{a, \ldots, a}^{(\sigma)}(t)$

We proved $\left.\widehat{\mathscr{F}}_{a}, \ldots, a, a\right)$ also satisty congruence relations in [W].

## Theorem (Wang)

Let $a \in \mathbb{Z}_{p} \backslash \mathbb{Z}_{\leq 0}$ and suppose $c \in 1+q W$. Then

$$
\widehat{\mathscr{F}}_{a, \ldots, a a}^{(\sigma)}(t) \equiv \frac{\widehat{G}_{a, \ldots, a}^{(\sigma)}(t)_{<p^{n}}}{F_{a, \ldots, a}(t)_{<p^{n}}} \quad \bmod p^{n} W[[t]]
$$

for all $n \in \mathbb{Z}_{\geq 0}$.

## Corollary

If $a^{(r)}=a$ for some $r>0$ where $a^{(r)}$ is the $r$-th Dwork's prime $a^{(r)}=\left(a^{(r-1)}\right)^{\prime}$ and $a^{(0)}=a$.
Then

$$
\widehat{\mathscr{F}}_{a, \ldots, a}^{(\sigma)}(t) \in W\left\langle t, t^{-1}, h(t)^{-1}\right\rangle, \quad h(t):=\prod_{i=0}^{r-1} F_{a^{(i)}, \ldots, a^{(i)}}(t)_{<p}
$$

is a convergent function, where

## Sketch of Proof

- Step I:Reduction to the case $c=1$.

We can prove if the congruence relations is true for $c=1$, then it is true for any other $c$.

## Sketch of Proof

- Step I:Reduction to the case $c=1$.

We can prove if the congruence relations is true for $c=1$, then it is true for any other $c$.

- Step II: Prove the following lemma for $c=1$.


## Lemma

For $k, k^{\prime} \in \mathbb{Z}_{\geq 0}$ and $n \in \mathbb{Z}_{\geq 1}$, we have

$$
k \equiv k^{\prime} \bmod p^{n} \Rightarrow \frac{\widehat{B}_{k}}{A_{k}} \equiv \frac{\widehat{B}_{k^{\prime}}}{A_{k^{\prime}}} \bmod p^{n} .
$$

## Sketch of Proof

- Step I:Reduction to the case $c=1$.

We can prove if the congruence relations is true for $c=1$, then it is true for any other $c$.

- Step II: Prove the following lemma for $c=1$.


## Lemma

For $k, k^{\prime} \in \mathbb{Z}_{\geq 0}$ and $n \in \mathbb{Z}_{\geq 1}$, we have

$$
k \equiv k^{\prime} \bmod p^{n} \Rightarrow \frac{\widehat{B}_{k}}{A_{k}} \equiv \frac{\widehat{B}_{k^{\prime}}}{A_{k^{\prime}}} \bmod p^{n} .
$$

- Step III: Prove the congruence relation for $c=1$.


## Table of Contents

(1) p-adic hypergeometric functions

- Dwork's p-adic hypergeometric functions $\mathscr{F}_{a_{1}, \ldots, a_{s}}^{D w}(t)$
- p-adic hypergeometric functions of logarithmic type $\mathscr{F}_{a_{1}, \ldots, a_{s}}^{(\sigma)}(t)$
- $p$-adic hypergeometric functions $\widehat{\mathscr{F}}_{a, \ldots, a}^{(\sigma)}(t)$
(2) Transformation Formulas of $p$-adic Hypergeometric Functions
- Conjectures
- Case : $s=1$
- Case : $s=2$


## Transformation Formulas of $p$-adic Hypergeometric Functions

Conjecture (Transformation Formulas of p-adic Hypergeometric Functions)
Let $\sigma(t)=c t^{p}$ and $\widehat{\sigma}(t)=c^{-1} t^{p}$. Suppose $a^{(r)}=a$ for some $r>0$. Then

$$
\mathscr{F}_{a, \ldots, a}^{(\sigma)}(t)=-\widehat{\mathscr{F}}_{a, \ldots, a}^{(\widehat{\sigma})}\left(t^{-1}\right)
$$

in the ring $W\left\langle t, t^{-1}, h(t)^{-1}\right\rangle$ where $h(t):=\prod_{i=0}^{r-1} F_{a^{(i)}, \ldots, a^{(i)}}(t)_{<p}$.

## Transformation Formulas of $p$-adic Hypergeometric Functions

Conjecture (Transformation Formulas of p-adic Hypergeometric Functions)
Let $\sigma(t)=c t^{p}$ and $\widehat{\sigma}(t)=c^{-1} t^{p}$. Suppose $a^{(r)}=a$ for some $r>0$. Then

$$
\mathscr{F}_{a, \ldots, a}^{(\sigma)}(t)=-\widehat{\mathscr{F}}_{a, \ldots, a}^{(\widehat{\sigma})}\left(t^{-1}\right)
$$

in the ring $W\left\langle t, t^{-1}, h(t)^{-1}\right\rangle$ where $h(t):=\prod_{i=0}^{r-1} F_{a^{(i)}, \ldots, a^{(i)}}(t)_{<p}$.

## Remark

There is an involution

$$
\omega: W\left\langle t, t^{-1}, h(t)^{-1}\right\rangle \longrightarrow W\left\langle t, t^{-1}, h(t)^{-1}\right\rangle, \quad \omega(f(t))=f\left(t^{-1}\right)
$$

By congruence relations of $\mathscr{F}_{a}^{(\sigma)}(t)$ and $\widehat{\mathscr{F}}_{a}^{(\hat{\sigma})}(t)$, the conjecture of transformation formulas is equivalent to the statement

$$
\frac{G_{a}^{(\sigma)}(t)_{<p^{n}}}{F_{a}(t)_{<p^{n}}} \equiv-\left.\frac{\widehat{G}_{a}^{(\widehat{\sigma})}(t)_{<p^{n}}}{F_{a}(t)_{<p^{n}}}\right|_{t^{-1}} \quad \bmod p^{n} W[[t]]
$$

for all $n \in \mathbb{Z}_{\geq 0}$.

By congruence relations of $\mathscr{F}_{a}^{(\sigma)}(t)$ and $\widehat{\mathscr{F}}_{a}^{(\hat{\sigma})}(t)$, the conjecture of transformation formulas is equivalent to the statement

$$
\frac{G_{a}^{(\sigma)}(t)_{<p^{n}}}{F_{a}(t)_{<p^{n}}} \equiv-\left.\frac{\widehat{G}_{a}^{(\widehat{\sigma})}(t)_{<p^{n}}}{F_{a}(t)_{<p^{n}}}\right|_{t^{-1}} \quad \bmod p^{n} W[[t]]
$$

for all $n \in \mathbb{Z}_{\geq 0}$.
So it suffices to show that

$$
\sum_{\substack{i+j=m \\ j \leq i, j \leq p^{n}-1}} B_{i} A_{p^{n}-j-1}+\widehat{B}_{p^{n}-j-1} A_{i} \equiv 0 \quad \bmod p^{n} .
$$

for any $m$ with $0 \leq m \leq 2\left(p^{n}-1\right)$.

## Transformation Formulas of $p$-adic Hypergeometric Functions

Conjecture (Transformation Formulas of Dwork's p-adic Hypergeometric Functions)
Let $I$ is the unique integer in $\{0,1, \cdots, p-1\}$ such that $a+I \equiv 0 \bmod p$. Then for odd prime $p$, we have

$$
\mathscr{F}_{a, \cdots, a}^{\mathrm{Dw}}(t)=\left((-1)^{s} t\right)^{\prime} \mathscr{F}_{a, \cdots, a}^{\mathrm{Dw}}\left(t^{-1}\right) .
$$

For $p=2$, we have

$$
\mathscr{F}_{a, \cdots, a}^{\mathrm{Dw}}(t)= \pm\left((-1)^{s} t\right)^{l} \mathscr{F}_{a, \cdots, a}^{\mathrm{Dw}}\left(t^{-1}\right)
$$

where $\pm$ depends on a and s.

## Transformation Formulas - Case $s=1$

## Theorem

Let $p$ be an odd prime and $a \in \mathbb{Z}_{p}$, then we have

$$
\mathscr{F}_{a}^{\mathrm{Dw}}(t)=(-t)^{\prime} \mathscr{F}_{a}^{\mathrm{Dw}}\left(t^{-1}\right),
$$

where $I$ is the unique integer in $\{0,1, \cdots, p-1\}$ such that $a+I \equiv 0$ $\bmod p$.

For $p=2$, we have

$$
\mathscr{F}_{a}^{\mathrm{Dw}}(t)= \pm(-t)^{\prime} \mathscr{F}_{a}^{\mathrm{Dw}}\left(t^{-1}\right),
$$

$\left(+: a^{\prime} \equiv 0 \bmod 2 ;-: a^{\prime} \equiv 1 \bmod 2\right)$

## Proof.

By congruence relation of Dwork $p$-adic hypergeometric function, we have

$$
\mathscr{F}_{a}^{\mathrm{Dw}}(t) \equiv \frac{F_{a}(t)_{<p^{n}}}{F_{a^{\prime}}\left(t^{p}\right)_{<p^{n}}}=\frac{(1-t)_{<p^{n}}^{-a}}{\left(1-t^{p}\right)_{<p^{n}}^{-a^{\prime}}} \equiv \frac{(1-t)_{<p^{n}}^{-N}}{\left(1-t^{p}\right)_{<p^{n}}^{-N^{\prime}}} \quad \bmod p^{n}
$$

for some $N \in \mathbb{Z}_{>0}$ and $a \equiv N \bmod p$.

## Proof.

By congruence relation of Dwork p-adic hypergeometric function, we have

$$
\mathscr{F}_{a}^{\mathrm{Dw}}(t) \equiv \frac{F_{a}(t)_{<p^{n}}}{F_{a^{\prime}}\left(t^{p}\right)_{<p^{n}}}=\frac{(1-t)_{<p^{n}}^{-a}}{\left(1-t^{p}\right)_{<p^{n}}^{-a^{\prime}}} \equiv \frac{(1-t)_{<p^{n}}^{-N}}{\left(1-t^{p}\right)_{<p^{n}}^{-N^{\prime}}} \quad \bmod p^{n}
$$

for some $N \in \mathbb{Z}_{>0}$ and $a \equiv N \bmod p$.
Here we assume $p$ is odd ( $p=2$ is similar); then we obtain

$$
\left.\mathscr{F}_{a}^{\mathrm{Dw}}\left(t^{-1}\right) \equiv \frac{(1-t)_{<p^{n}}^{-N}}{\left(1-t^{p}\right)_{<p^{n}}^{-N^{\prime}}}\right|_{t^{-1}} \quad \bmod p^{n}
$$

## Proof.

By congruence relation of Dwork p-adic hypergeometric function, we have

$$
\mathscr{F}_{a}^{\mathrm{Dw}}(t) \equiv \frac{F_{a}(t)_{<p^{n}}}{F_{a^{\prime}}\left(t^{p}\right)_{<p^{n}}}=\frac{(1-t)_{<p^{n}}^{-a}}{\left(1-t^{p}\right)_{<p^{n}}^{-a^{\prime}}} \equiv \frac{(1-t)_{<p^{n}}^{-N}}{\left(1-t^{p}\right)_{<p^{n}}^{-N^{\prime}}} \quad \bmod p^{n}
$$

for some $N \in \mathbb{Z}_{>0}$ and $a \equiv N \bmod p$.
Here we assume $p$ is odd ( $p=2$ is similar); then we obtain

$$
\begin{aligned}
\mathscr{F}_{a}^{\mathrm{Dw}}\left(t^{-1}\right) & \left.\equiv \frac{(1-t)_{<p^{n}}^{-N}}{\left(1-t^{p}\right)_{<p^{n}}^{-N^{\prime}}}\right|_{t^{-1}} \bmod p^{n} \\
& \left.\equiv \frac{(1-t)^{-N}}{\left(1-t^{p}\right)^{-N^{\prime}}}\right|_{t^{-1}}
\end{aligned}
$$

## Proof.

By congruence relation of Dwork p-adic hypergeometric function, we have

$$
\mathscr{F}_{a}^{\mathrm{Dw}}(t) \equiv \frac{F_{a}(t)_{<p^{n}}}{F_{a^{\prime}}\left(t^{p}\right)_{<p^{n}}}=\frac{(1-t)_{<p^{n}}^{-a}}{\left(1-t^{p}\right)_{<p^{n}}^{-a^{\prime}}} \equiv \frac{(1-t)_{<p^{n}}^{-N}}{\left(1-t^{p}\right)_{<p^{n}}^{-N^{\prime}}} \quad \bmod p^{n}
$$

for some $N \in \mathbb{Z}_{>0}$ and $a \equiv N \bmod p$.
Here we assume $p$ is odd ( $p=2$ is similar); then we obtain

$$
\begin{aligned}
\mathscr{F}_{a}^{\mathrm{Dw}}\left(t^{-1}\right) & \left.\equiv \frac{(1-t)_{<p^{n}}^{-N}}{\left(1-t^{p}\right)_{<p^{n}}^{-N^{\prime}}}\right|_{t^{-1}} \bmod p^{n} \\
& \left.\equiv \frac{(1-t)^{-N}}{\left(1-t^{p}\right)^{-N^{\prime}}}\right|_{t^{-1}} \\
& =\frac{(-t)^{-p N^{\prime}}}{(-t)^{-p N^{\prime}}} \cdot \frac{\left(1-t^{-1}\right)^{-N}}{\left(1-t^{-p}\right)^{-N^{\prime}}}
\end{aligned}
$$

## Proof.

By congruence relation of Dwork p-adic hypergeometric function, we have

$$
\mathscr{F}_{a}^{\mathrm{Dw}}(t) \equiv \frac{F_{a}(t)_{<p^{n}}}{F_{a^{\prime}}\left(t^{p}\right)_{<p^{n}}}=\frac{(1-t)_{<p^{n}}^{-a}}{\left(1-t^{p}\right)_{<p^{n}}^{-a^{\prime}}} \equiv \frac{(1-t)_{<p^{n}}^{-N}}{\left(1-t^{p}\right)_{<p^{n}}^{-N^{\prime}}} \quad \bmod p^{n}
$$

for some $N \in \mathbb{Z}_{>0}$ and $a \equiv N \bmod p$.
Here we assume $p$ is odd ( $p=2$ is similar); then we obtain

$$
\begin{aligned}
\mathscr{F}_{a}^{\mathrm{Dw}}\left(t^{-1}\right) & \left.\equiv \frac{(1-t)_{<p^{n}}^{-N}}{\left(1-t^{p}\right)_{<p^{n}}^{-N^{\prime}}}\right|_{t^{-1}} \bmod p^{n} \\
& \left.\equiv \frac{(1-t)^{-N}}{\left(1-t^{p}\right)^{-N^{\prime}}}\right|_{t^{-1}} \\
& =\frac{(-t)^{-p N^{\prime}}}{(-t)^{-p N^{\prime}}} \cdot \frac{\left(1-t^{-1}\right)^{-N}}{\left(1-t^{-p}\right)^{-N^{\prime}}} \\
& =\frac{(-t)^{-1}(1-t)^{-N}}{\left(1-t^{p}\right)^{-N^{\prime}}}
\end{aligned}
$$

## Theorem (Wang)

Transformation formulas of $\mathscr{F}_{a, \cdots, a}^{D w}(t)$ imply transformation formulas of $\mathscr{F}_{a, \cdots, a}^{(\sigma)}(t)$ and $\widehat{\mathscr{F}}_{a}{ }^{(\sigma, \cdots, a}(\widehat{\sigma})$.

## Theorem (Wang)

 $\mathscr{F}_{a, \cdots, a}^{(\sigma)}(t)$ and $\widehat{\mathscr{F}}_{a}, \cdots, a(\widehat{\sigma})$.
(Sketch of proof): Let us define functions $f: \mathbb{Z}_{>0} \rightarrow W$ and $f: \mathbb{Z}_{>0} \rightarrow W$ by

$$
f(k)=\frac{B_{k}}{A_{k}}, \quad \widehat{f}(k)=\frac{\widehat{B}_{k}}{A_{k}} .
$$

## Theorem (Wang)

Transformation formulas of $\mathscr{F}{ }_{a, \cdots, a}^{D w}(t)$ imply transformation formulas of $\mathscr{F}_{a, \cdots, a}^{(\sigma)}(t)$ and $\widehat{\mathscr{F}}_{a}{ }^{(\sigma)}{ }^{(\widehat{\sigma})}, a(t)$.
(Sketch of proof): Let us define functions $f: \mathbb{Z}_{>0} \rightarrow W$ and $\hat{f}: \mathbb{Z}_{>0} \rightarrow W$ by

$$
f(k)=\frac{B_{k}}{A_{k}}, \quad \widehat{f}(k)=\frac{\widehat{B}_{k}}{A_{k}} .
$$

Since

$$
k \equiv k^{\prime} \quad \bmod p^{n} \Longrightarrow \frac{B_{k}}{A_{k}} \equiv \frac{B_{k^{\prime}}}{A_{k^{\prime}}}, \quad \frac{\widehat{B}_{k}}{A_{k}} \equiv \frac{\widehat{B}_{k^{\prime}}}{A_{k^{\prime}}} \bmod p^{n},
$$

we can extend functions $f$ and $\widehat{f}$ from $\mathbb{Z}_{>0}$ to $\mathbb{Z}_{p}$ denoted by $\beta$ and $\widehat{\beta}$, respectively. We write the value of $\beta$ (resp. $\widehat{\beta}$ ) at $\lambda \in \mathbb{Z}_{p}$ by $\beta_{\lambda}\left(\right.$ resp. $\left.\widehat{\beta}_{\lambda}\right)$.

## Lemma

Let $\lambda \in \mathbb{Z}_{p}$ and $a \in \mathbb{Z}_{p} \backslash \mathbb{Z}_{\leq 0}$, then we have

$$
\beta_{\lambda}+\widehat{\beta}_{-\lambda-a}=0
$$

## Lemma

Let $a \in \mathbb{Z}_{p}, m, k, d \in \mathbb{Z}_{\geq 0}$ with $0 \leq m \leq p^{n}-1$ and $0 \leq d \leq n$.
If the transformation formula of Dwork p-adic hypergeometric function is true, then we have

$$
\sum_{\substack{i \equiv k \\
\bmod _{\begin{subarray}{c}{0 \leq i \leq m \\
i \neq j=m} }} A_{i} A_{p^{n}-j-1}-\sum_{\substack{p^{n}-j^{\prime}-1 \equiv-k-a \\
0 \leq j^{\prime} \leq m \\
i^{\prime}+j^{\prime}=m}} \bmod p^{n-d}}\end{subarray}} A_{i^{\prime}} A_{p^{n}-j^{\prime}-1} \equiv 0
$$

modulo $p^{d+1}$.

Rewriting the summation

$$
\sum_{\substack{i+j=m \\ 0 \leq i, j \leq p^{n}-1}} B_{i} A_{p^{n}-j-1}+\widehat{B}_{p^{n}-j-1} A_{i}
$$

by the relation $\beta_{k}=B_{k} / A_{k}$ and $\widehat{\beta}_{k}=\widehat{B}_{k} / A_{k}$, we obtain

$$
\sum_{\substack{i+j=m \\ 0 \leq i, j \leq m}} \beta_{i} A_{i} A_{p^{n}-j-1}+\sum_{\substack{i^{\prime}+j^{\prime}=m \\ 0 \leq i^{\prime}, j^{\prime} \leq m}} \widehat{\beta}_{p^{n}-j^{\prime}-1} A_{i^{\prime}} A_{p^{n}-j^{\prime}-1} .
$$

Rewriting the summation

$$
\sum_{\substack{i+j=m \\ 0 \leq i, j \leq p^{n}-1}} B_{i} A_{p^{n}-j-1}+\widehat{B}_{p^{n}-j-1} A_{i}
$$

by the relation $\beta_{k}=B_{k} / A_{k}$ and $\widehat{\beta}_{k}=\widehat{B}_{k} / A_{k}$, we obtain

$$
\sum_{\substack{i+j=m \\ 0 \leq i, j \leq m}} \beta_{i} A_{i} A_{p^{n}-j-1}+\sum_{\substack{i^{\prime}+j^{\prime}=m \\ 0 \leq i^{\prime}, j^{\prime} \leq m}} \widehat{\beta}_{p^{n}-j^{\prime}-1} A_{i^{\prime}} A_{p^{n}-j^{\prime}-1} .
$$

Then using lemmas recursively, we obtain the result.

Rewriting the summation

$$
\sum_{\substack{i+j=m \\ 0 \leq i, j \leq p^{n}-1}} B_{i} A_{p^{n}-j-1}+\widehat{B}_{p^{n}-j-1} A_{i}
$$

by the relation $\beta_{k}=B_{k} / A_{k}$ and $\widehat{\beta}_{k}=\widehat{B}_{k} / A_{k}$, we obtain

$$
\sum_{\substack{i+j=m \\ 0 \leq i, j \leq m}} \beta_{i} A_{i} A_{p^{n}-j-1}+\sum_{\substack{i^{\prime}+j^{\prime}=m \\ 0 \leq i^{\prime}, j^{\prime} \leq m}} \widehat{\beta}_{p^{n}-j^{\prime}-1} A_{i^{\prime}} A_{p^{n}-j^{\prime}-1} .
$$

Then using lemmas recursively, we obtain the result.

## Corollary

Transformation formulas of $\mathscr{F}_{a}{ }^{(\sigma)}(t)$ and $\widehat{\mathscr{F}}_{a}^{(\hat{\sigma})}(t)$ (i.e., $s=1$ ) are true.

## Transformation Formulas - Case: $s=2$

## Theorem (Wang)

Let $N \geq 2$ be an integer, prime $p>N$ and $a \in \frac{1}{N} \mathbb{Z}$ with $0<a<1$. Let $\sigma(t)=c t^{p}$ and $\widehat{\sigma}(t)=c^{-1} t^{p}$. Then

$$
\mathscr{F}_{a, a}^{(\sigma)}(t)=-\widehat{\mathscr{F}}_{a, a}^{(\widehat{\sigma})}\left(t^{-1}\right)
$$

and

$$
\mathscr{F}_{a, a}^{\mathrm{Dw}}(t)=t^{\prime} \mathscr{F}_{a, a}^{\mathrm{Dw}}\left(t^{-1}\right) .
$$

## Transformation Formulas - Case: $s=2$

## Theorem (Wang)

Let $N \geq 2$ be an integer, prime $p>N$ and $a \in \frac{1}{N} \mathbb{Z}$ with $0<a<1$.
Let $\sigma(t)=c t^{p}$ and $\widehat{\sigma}(t)=c^{-1} t^{p}$. Then

$$
\mathscr{F}_{a, a}^{(\sigma)}(t)=-\widehat{\mathscr{F}}_{a, a}^{(\widehat{\sigma})}\left(t^{-1}\right)
$$

and

$$
\mathscr{F}_{a, a}^{\mathrm{Dw}}(t)=t^{\prime} \mathscr{F}_{a, a}^{\mathrm{Dw}}\left(t^{-1}\right) .
$$

The proof of this theorem uses hypergeometric curves, their algebraic de Rham cohomology and so on ([W]).

## Transformation Formulas - Case: $s=2$

## Theorem (Wang)

Let $N \geq 2$ be an integer, prime $p>N$ and $a \in \frac{1}{N} \mathbb{Z}$ with $0<a<1$.
Let $\sigma(t)=c t^{p}$ and $\widehat{\sigma}(t)=c^{-1} t^{p}$. Then

$$
\mathscr{F}_{a, a}^{(\sigma)}(t)=-\widehat{\mathscr{F}}_{a, a}^{(\widehat{\sigma})}\left(t^{-1}\right)
$$

and

$$
\mathscr{F}_{a, a}^{\mathrm{Dw}}(t)=t^{\prime} \mathscr{F}_{a, a}^{\mathrm{Dw}}\left(t^{-1}\right) .
$$

The proof of this theorem uses hypergeometric curves, their algebraic de Rham cohomology and so on ([W]).

Basic idea :

- Hypergeometric curves give $p$-adic hypergeometric functions.
- Automorphisms of hypergeometric curves give transformtation formulas of $p$-adic hypergeometric functions.


## Reference

固 Asakura，M．：New p－adic hypergeometric functions and syntomic regulators．arXiv：1811．03770．
回 Asakura，M．and Miyatani，K．：F－isocrystal and syntomic regulators via hypergeometric functions．arXiv：1711．08854．
囯 Dwork，B．：p－adic cycles．Publ．Math．IHES，tome 37 （1969），27－115．
䡒 Hartshorne，R．：Algebraic Geometry．（Grad．Texts in Math．52）， Springer， 1977.
Serre，J．－P．：Local Fields．（Grad．Texts in Math．67），Springer， 1979.
（1）Chung－Hsuan，W．：Congruence relations for p－adic hypergeometric functions $\widehat{\mathscr{F}}_{a, \ldots, a}^{(\sigma)}(t)$ and its transformation formula．arXiv：2001．08117
目 Chung－Hsuan，W．：On transformation formulas of p－adic hypergeometric functions $\mathscr{F}_{a, \cdots, a}^{(\sigma)}(t)$ and $\widehat{\mathscr{F}}_{a, \ldots, a}^{(\sigma)}(t)$ ．arXiv：2104．14092

