Transformation Formulas of *p*-adic Hypergeometric Functions

Wang Chung-Hsuan

Department of Mathematics National Cheng Kung University

TMS Annual Meeting 2021

1 p-adic hypergeometric functions

- Dwork's *p*-adic hypergeometric functions $\mathscr{F}_{a_1,\dots,a_s}^{Dw}(t)$
- *p*-adic hypergeometric functions of logarithmic type $\mathscr{F}^{(\sigma)}_{a_1,\cdots,a_s}(t)$
- *p*-adic hypergeometric functions $\widehat{\mathscr{F}}_{a,...,a}^{(\sigma)}(t)$

Transformation Formulas of *p*-adic Hypergeometric Functions

- Conjectures
- Case : *s* = 1
- Case : *s* = 2

1 *p*-adic hypergeometric functions

- Dwork's *p*-adic hypergeometric functions $\mathscr{F}_{a_1,\dots,a_s}^{Dw}(t)$
- *p*-adic hypergeometric functions of logarithmic type $\mathscr{F}^{(\sigma)}_{a_1,\cdots,a_s}(t)$
- *p*-adic hypergeometric functions $\widehat{\mathscr{F}}_{a,...,a}^{(\sigma)}(t)$

2 Transformation Formulas of p-adic Hypergeometric Functions

- Conjectures
- Case : *s* = 1
- Case : *s* = 2

Let $s \ge 1$ be an integer.

For a s-tuple $\underline{a} = (a_1,...,a_s) \in \mathbb{Z}_p^s$ of p-adic integers, let

$$F_{\underline{a}}(t) = \sum_{k=0}^{\infty} \frac{(a_1)_k}{k!} \cdots \frac{(a_s)_k}{k!} t^k$$

be the *p*-adic hypergeometric power series where

$$(\alpha)_k = \alpha(\alpha+1)\cdots(\alpha+k-1)$$
 when $k \ge 1$ and $(\alpha)_0 = 1$.

Let a':=(a+l)/p where $l \in \{0, 1, ..., p-1\}$ is the unique integer such that $a+l \equiv 0 \mod p$ (a' is called the **Dwork prime** of a).

Let a':=(a+l)/p where $l \in \{0, 1, ..., p-1\}$ is the unique integer such that $a+l \equiv 0 \mod p$ (a' is called the **Dwork prime** of a).

Example

Let p = 5. We have

$$1' = 1, \ (\frac{1}{2})' = \frac{\frac{1}{2} + 2}{5} = \frac{1}{2} \text{ and } (\frac{1}{3})' = \frac{\frac{1}{3} + 3}{5} = \frac{2}{3}.$$

Similarly, the *i*-th Dwork prime $a^{(i)}$ is defined by $a^{(i)} = (a^{(i-1)})'$ and $a^{(0)} = a$.

Put
$$\underline{a'} = (a'_1, \cdots, a'_s)$$
.

The Dwork's p-adic hypergeometric function is defined to be

$$\mathscr{F}_{\underline{a}}^{Dw}(t) = F_{\underline{a}}(t)/F_{\underline{a'}}(t^p).$$

Put
$$\underline{a'} = (a'_1, \cdots, a'_s)$$
.

The Dwork's p-adic hypergeometric function is defined to be

$$\mathscr{F}_{\underline{a}}^{Dw}(t) = F_{\underline{a}}(t)/F_{\underline{a'}}(t^p).$$

Example

Taking $a_1 = \cdots = a_s = 1$, we have

$$\mathscr{F}_{\underline{a}}^{Dw}(t) = F_{1,\dots,1}(t)/F_{1,\dots,1}(t^p) = \frac{\sum t^n}{\sum t^{pn}} = \frac{\frac{1}{1-t}}{\frac{1}{1-t^p}} = 1 + t + \dots + t^{p-1}.$$

э

A B A A B A

Image: A matrix

Dwork's *p*-adic hypergeometric functions satisfy congruence relations.

Theorem (Dwork)

We have

$$\mathscr{F}^{D_W}_{\underline{a}}(t) \equiv rac{F_{\underline{a}}(t)_{< p^n}}{[F_{\underline{a'}}(t^p)]_{< p^n}} \mod p^n \mathbb{Z}_p[[t]]$$

where $f(t)_{\leq m} := \sum_{n \leq m} A_n t^n$ is the truncated polynomial for a power series $f(t) = \sum_{n=0}^{\infty} A_n t^n$.

A B A A B A

Example

Taking $a_1 = \cdots = a_s = 1$, we have

$$\frac{F_{1,\dots,1}(t)_{
$$= 1+t+\dots+t^{p-1} \equiv \mathscr{F}_{1,\dots,1}^{Dw}(t) \mod p$$$$

2

<ロト <問ト < 目と < 目と

Example

Taking $a_1 = \cdots = a_s = 1$, we have

$$\frac{F_{1,\dots,1}(t)_{
$$= 1+t+\dots+t^{p-1} \equiv \mathscr{F}_{1,\dots,1}^{Dw}(t) \mod p$$$$

and

$$\frac{F_{1,\dots,1}(t)_{
$$= \frac{\frac{t^{p^2}-1}{t-1}}{\frac{t^{p^2}-1}{t^p-1}} = 1+t+\dots+t^{p-1} \equiv \mathscr{F}_{1,\dots,1}^{Dw}(t) \mod p^2.$$$$

3

イロン イ理 とくほとう ほんし

From Dwork's congruence relation, we have

$$\mathscr{F}_{\underline{a}}^{\mathrm{Dw}}(t) \in \mathbb{Z}_{p}\langle t, f(t)^{-1} \rangle := \varprojlim_{n} (\mathbb{Z}_{p}/p^{n}\mathbb{Z}_{p}[t, f(t)^{-1}])$$

where

$$f(t) := \prod_{i=0}^{N} F_{a_{1}^{(i)}, \cdots, a_{s}^{(i)}}(t)_{$$

and N is an integer such that $\underline{a}^{(N)} = \underline{a}$.

Let $\mathbb{C}_p = \widehat{\overline{\mathbb{Q}_p}}$ and $\mathcal{O}_{\mathbb{C}_p} := \{|x|_p \leq 1\}$ the valuation ring and $m := \{|x|_p < 1\}$ the maximal ideal.

Let $\mathbb{C}_{p} = \widehat{\overline{\mathbb{Q}_{p}}}$ and $\mathcal{O}_{\mathbb{C}_{p}} := \{|x|_{p} \leq 1\}$ the valuation ring and $m := \{|x|_{p} < 1\}$ the maximal ideal.

For $\alpha \in \mathcal{O}_{\mathbb{C}_p}$ satisfying

$$F_{\underline{a}'}(\alpha)_{$$

the special value $\mathscr{F}_a^{\mathrm{Dw}}(\alpha)$ is defined to be

$$\lim_{n\to\infty}\Big(\frac{F_{\underline{a}}(t)_{$$

Dwork showed a geometric aspect of his p-adic hypergeometric functions by his unit root formula.

Theorem (unit root formula)

For a smooth ordinary elliptic curve

$$E_{\alpha}: y^2 = x(1-x)(1-\alpha x)$$

over \mathbb{F}_p , the unit root ϵ_p of E_α satisfies

$$\epsilon_{\boldsymbol{\rho}} = (-1)^{\frac{\boldsymbol{\rho}-1}{2}} \mathscr{F}_{\frac{1}{2},\frac{1}{2}}^{\boldsymbol{D}\boldsymbol{w}}(\widehat{\alpha})$$

where $\widehat{\alpha} \in \mathbb{Z}_p^{\times}$ is the Teichmüller lift of $\alpha \in \mathbb{F}_p^{\times}$.

Unit root is the root of $x^2 - a_p x + p$ which is unit $(a_p := \#E(\mathbb{F}_p) - p - 1)$.

p-adic hypergeometric functions of logarithmic type $\mathscr{F}_{a_1,\cdots,a_s}^{(\sigma)}(t)$

Let $W = W(\overline{\mathbb{F}}_p)$ denote the Witt ring, and $K = \operatorname{Frac} W$ its fractional field.

p-adic hypergeometric functions of logarithmic type $\mathscr{F}_{a_1,\cdots,a_s}^{(\sigma)}(t)$

Let $W = W(\overline{\mathbb{F}}_p)$ denote the Witt ring, and $K = \operatorname{Frac} W$ its fractional field. Let $\sigma : W[[t]] \to W[[t]]$ be a *p*-th Frobenius given by $\sigma(t) = ct^p$ with $c \in 1 + pW$:

$$\left(\sum_{i}a_{i}t^{i}\right)^{\sigma}=\sum_{i}a_{i}^{F}c^{i}t^{iF}$$

where $F: W \to W$ is the Frobenius on W.

Define *p*-adic digamma function

$$\psi_{p}(z) := -\gamma_{p} + \lim_{n \in \mathbb{Z}_{>0}, n \to z} \sum_{1 \le k < n, p \nmid k} \frac{1}{k}$$

where γ_p is

$$-\lim_{s \to \infty} rac{1}{p^s} \sum_{0 \le j < p^s, p \nmid j} \log(j), \quad (\log = \text{Iwasawa log})$$

æ

Definition (M. Asakura)

We define

$$\mathscr{F}_{\underline{a}}^{(\sigma)}(t) = \frac{G_{\underline{a}}(t)}{F_{\underline{a}}(t)} = \frac{1}{F_{\underline{a}}(t)} \bigg[\psi_p(a_1) + \dots + \psi_p(a_s) + s\gamma_p - p^{-1} \log(c) + \int_0^t (F_{\underline{a}}(t) - F_{\underline{a'}}(t^{\sigma})) \frac{dt}{t} \bigg]$$

2

A D N A B N A B N A B N

Definition (M. Asakura)

We define

$$\mathscr{F}_{\underline{a}}^{(\sigma)}(t) = \frac{G_{\underline{a}}(t)}{F_{\underline{a}}(t)} = \frac{1}{F_{\underline{a}}(t)} \bigg[\psi_p(a_1) + \dots + \psi_p(a_s) + s\gamma_p - p^{-1} \log(c) \\ + \int_0^t (F_{\underline{a}}(t) - F_{\underline{a'}}(t^{\sigma})) \frac{dt}{t} \bigg]$$

Here we think $\int_0^t (-) \frac{dt}{t}$ to be a operator such that

$$\int_0^t t^\alpha \frac{dt}{t} = \frac{t^\alpha}{\alpha}, \quad \alpha \neq 0.$$

æ

イロト 不得 トイヨト イヨト

Write
$$F_{\underline{a}}(t) = \sum A_k t^k$$
, $F_{\underline{a}'}(t) = \sum A_k^{(1)} t^k$ and $G_{\underline{a}}(t) = \sum B_k t^k$.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 三厘

Write $F_{\underline{a}}(t) = \sum A_k t^k$, $F_{\underline{a}'}(t) = \sum A_k^{(1)} t^k$ and $G_{\underline{a}}(t) = \sum B_k t^k$. Then for $k \in \mathbb{Z}_{\geq 0}$, we have

$$B_0 = \psi_p(a_1) + \dots + \psi_p(a_s) + s\gamma_p - p^{-1}\log(c), \quad B_k = \frac{A_k - c^{k/p}A_{k/p}^{(1)}}{k}$$

where $A_{\frac{m}{p}}^{(1)} = 0$ if $m \not\equiv 0 \mod p$ or m < 0.

3

(- >

Write $F_{\underline{a}}(t) = \sum A_k t^k$, $F_{\underline{a}'}(t) = \sum A_k^{(1)} t^k$ and $G_{\underline{a}}(t) = \sum B_k t^k$. Then for $k \in \mathbb{Z}_{\geq 0}$, we have

$$B_0 = \psi_p(a_1) + \dots + \psi_p(a_s) + s\gamma_p - p^{-1}\log(c), \quad B_k = \frac{A_k - c^{k/p}A_{k/p}^{(1)}}{k}$$

where $A_{\frac{m}{p}}^{(1)} = 0$ if $m \not\equiv 0 \mod p$ or m < 0.

These *p*-adic hypergeometric functions of logarithmic type also satisfy congruence relations.

Theorem (M. Asakura)

Suppose that $a_i \notin \mathbb{Z}_{\leq 0}$ for all i. If $c \in 1 + 2pW$, then for all $n \geq 1$

$$\mathscr{F}^{(\sigma)}_{\underline{a}}(t) \equiv rac{G_{\underline{a}}(t)_{< p^n}}{F_{\underline{a}}(t)_{< p^n}} \mod p^n W[[t]].$$

If p = 2 and $c \in 1 + 2W$, then the above formula holds for modulo p^{n-1} .

....

Geometric aspect of $\mathscr{F}^{(\sigma)}_{a_1,\cdots,a_s}(t)$

Theorem (Asakura)

Suppose that p > 2 is prime to NM. Let $F : z^N + w^M = 1$ be the Fermat curve over W. Let

$$\operatorname{reg}_{\operatorname{syn}}: K_2(F) \otimes \mathbb{Q} \to H^2_{\operatorname{syn}}(F, \mathbb{Q}_p(2)) \cong H^1_{\operatorname{dR}}(F/K)$$

be the syntomic regulator map and let $A(i,j) \in K$ be defined by

$$\operatorname{reg}_{\operatorname{syn}}(\{1-z,1-w\}) = \sum_{(i,j)\in I} A^{(i,j)} M^{-1} z^{i-1} w^{j-M} dz.$$

Suppose that $(i,j) \in I$ satisfies $(i)\frac{i}{N} + \frac{j}{M} < 1$, $(ii)F_{\frac{i}{N},\frac{j}{M}}(1)_{<p^n} \equiv 0$ mod $p, \forall n \ge 1$. Then we have

$$A^{(i,j)} = \mathscr{F}^{(\sigma)}_{rac{i}{\mathcal{N}},rac{j}{\mathcal{M}}}(1) \quad \textit{where} \quad \sigma(t) = t^p.$$

For $a \in \mathbb{Z}_p$, we write

$$F_{a,\ldots,a}(t) = \sum_{k=0}^{\infty} \left(\frac{(a)_k}{k!}\right)^s t^k, \quad F_{a',\ldots,a'}(t) = \sum_{k=0}^{\infty} \left(\frac{(a')_k}{k!}\right)^s t^k.$$

э

ヨト イヨト

For $a \in \mathbb{Z}_p$, we write

$$F_{a,\ldots,a}(t) = \sum_{k=0}^{\infty} \left(\frac{(a)_k}{k!}\right)^s t^k, \quad F_{a',\ldots,a'}(t) = \sum_{k=0}^{\infty} \left(\frac{(a')_k}{k!}\right)^s t^k.$$

Put

$$q:=egin{cases} 4&p=2\p&p\geq 3. \end{cases}$$

э

For $a \in \mathbb{Z}_p$, we write

$$F_{a,\ldots,a}(t) = \sum_{k=0}^{\infty} \left(\frac{(a)_k}{k!}\right)^s t^k, \quad F_{a',\ldots,a'}(t) = \sum_{k=0}^{\infty} \left(\frac{(a')_k}{k!}\right)^s t^k.$$

Put

$$q := \begin{cases} 4 & p = 2 \\ p & p \ge 3. \end{cases}$$

Let $l' \in \{0, 1, ..., q - 1\}$ be the unique integer such that $a + l' \equiv 0 \mod q$.

For $a \in \mathbb{Z}_p$, we write

$$F_{a,\ldots,a}(t) = \sum_{k=0}^{\infty} \left(\frac{(a)_k}{k!}\right)^s t^k, \quad F_{a',\ldots,a'}(t) = \sum_{k=0}^{\infty} \left(\frac{(a')_k}{k!}\right)^s t^k.$$

Put

$$q := \begin{cases} 4 & p = 2 \\ p & p \ge 3. \end{cases}$$

Let $l' \in \{0, 1, ..., q - 1\}$ be the unique integer such that $a + l' \equiv 0 \mod q$. Put

$$e:=l'-\lfloor\frac{l'}{p}\rfloor.$$

We define

$$\begin{split} \widehat{G}_{a,\dots,a}^{(\sigma)}(t) &:= t^{-a} \int_0^t (t^a F_{a,\dots,a}(t) - (-1)^{se} [t^{a'} F_{a',\dots,a'}(t)]^{\sigma}) \frac{dt}{t} \\ &= \sum_{k=0}^\infty \widehat{B}_k t^k \quad \text{for } a \in \mathbb{Z}_p \backslash \mathbb{Z}_{\leq 0}. \end{split}$$

3

<ロ> <四> <ヨ> <ヨ>

We define

$$\begin{split} \widehat{G}_{a,\dots,a}^{(\sigma)}(t) &:= t^{-a} \int_0^t (t^a F_{a,\dots,a}(t) - (-1)^{se} [t^{a'} F_{a',\dots,a'}(t)]^{\sigma}) \frac{dt}{t} \\ &= \sum_{k=0}^\infty \widehat{B}_k t^k \quad \text{for } a \in \mathbb{Z}_p \backslash \mathbb{Z}_{\leq 0}. \end{split}$$

Definition

We define

$$\widehat{\mathscr{F}}_{a,\ldots,a}^{(\sigma)}(t) := \frac{\widehat{G}_{a,\ldots,a}^{(\sigma)}(t)}{F_{a,\ldots,a}(t)}, \quad a \in \mathbb{Z}_p \setminus \mathbb{Z}_{\leq 0}.$$

2

イロト イヨト イヨト イヨト

We define

$$\begin{split} \widehat{G}_{a,\dots,a}^{(\sigma)}(t) &:= t^{-a} \int_0^t (t^a F_{a,\dots,a}(t) - (-1)^{se} [t^{a'} F_{a',\dots,a'}(t)]^{\sigma}) \frac{dt}{t} \\ &= \sum_{k=0}^\infty \widehat{B}_k t^k \quad \text{for } a \in \mathbb{Z}_p \backslash \mathbb{Z}_{\leq 0}. \end{split}$$

Definition

We define

$$\widehat{\mathscr{F}}_{a,\ldots,a}^{(\sigma)}(t) := \frac{\widehat{G}_{a,\ldots,a}^{(\sigma)}(t)}{F_{a,\ldots,a}(t)}, \quad a \in \mathbb{Z}_p \setminus \mathbb{Z}_{\leq 0}.$$

Write $F_{a,...,a}(t) = \sum A_k t^k$ and $F_{a',...,a'}(t) = \sum A_k^{(1)} t^k$. Then we have

$$\widehat{B}_k = \frac{1}{k+a} \left(A_k - (-1)^{se} (A^{(1)}_{\frac{k-l}{p}}) c^{\frac{k+a}{p}} \right).$$

3

イロト 不得 トイヨト イヨト

We proved $\widehat{\mathscr{F}}_{a,\dots,a}^{(\sigma)}(t)$ also satisty congruence relations in [W].

Theorem (Wang)

Let $a \in \mathbb{Z}_p \setminus \mathbb{Z}_{\leq 0}$ and suppose $c \in 1 + qW$. Then

$$\widehat{\mathscr{F}}_{a,\dots,a}^{(\sigma)}(t) \equiv \frac{\widehat{G}_{a,\dots,a}^{(\sigma)}(t)_{< p^n}}{F_{a,\dots,a}(t)_{< p^n}} \mod p^n W[[t]]$$

for all $n \in \mathbb{Z}_{\geq 0}$.

Corollary

If $a^{(r)} = a$ for some r > 0 where $a^{(r)}$ is the r-th Dwork's prime $a^{(r)} = (a^{(r-1)})'$ and $a^{(0)} = a$. Then

$$\widehat{\mathscr{F}}_{a,\ldots,a}^{(\sigma)}(t) \in W\langle t,t^{-1},h(t)^{-1}\rangle, \quad h(t) := \prod_{i=0}^{r-1} F_{a^{(i)},\ldots,a^{(i)}}(t)_{< p}$$

is a convergent function, where

$$W\langle t, t^{-1}, h(t)^{-1} \rangle := \varprojlim_n (W/p^n[t, t^{-1}, h(t)^{-1}])$$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Image: Image:

Step I:Reduction to the case c = 1.
 We can prove if the congruence relations is true for c = 1, then it is true for any other c.

- Step I:Reduction to the case c = 1.
 We can prove if the congruence relations is true for c = 1, then it is true for any other c.
- Step II: Prove the following lemma for c = 1.

Lemma

For $k, k' \in \mathbb{Z}_{\geq 0}$ and $n \in \mathbb{Z}_{\geq 1}$, we have

$$k \equiv k' \mod p^n \Rightarrow \frac{\widehat{B}_k}{A_k} \equiv \frac{\widehat{B}_{k'}}{A_{k'}} \mod p^n.$$

- Step I:Reduction to the case c = 1.
 We can prove if the congruence relations is true for c = 1, then it is true for any other c.
- Step II: Prove the following lemma for c = 1.

Lemma

For
$$k, k' \in \mathbb{Z}_{\geq 0}$$
 and $n \in \mathbb{Z}_{\geq 1}$, we have

$$k \equiv k' \mod p^n \Rightarrow \frac{\widehat{B}_k}{A_k} \equiv \frac{\widehat{B}_{k'}}{A_{k'}} \mod p^n.$$

• Step III: Prove the congruence relation for c = 1.

p-adic hypergeometric functions

- Dwork's *p*-adic hypergeometric functions $\mathscr{F}_{a_1,\dots,a_s}^{Dw}(t)$
- *p*-adic hypergeometric functions of logarithmic type $\mathscr{F}^{(\sigma)}_{a_1,\cdots,a_s}(t)$
- *p*-adic hypergeometric functions $\widehat{\mathscr{F}}_{a,...,a}^{(\sigma)}(t)$

Transformation Formulas of *p*-adic Hypergeometric Functions

- Conjectures
- Case : *s* = 1
- Case : *s* = 2

Transformation Formulas of *p*-adic Hypergeometric Functions

Conjecture (Transformation Formulas of *p*-adic Hypergeometric Functions)

Let $\sigma(t) = ct^{p}$ and $\widehat{\sigma}(t) = c^{-1}t^{p}$. Suppose $a^{(r)} = a$ for some r > 0. Then $\mathscr{F}_{a,...,a}^{(\sigma)}(t) = -\widehat{\mathscr{F}}_{a,...,a}^{(\widehat{\sigma})}(t^{-1})$ in the ring $W\langle t, t^{-1}, h(t)^{-1} \rangle$ where $h(t) := \prod_{i=0}^{r-1} F_{a^{(i)},...,a^{(i)}}(t)_{< p}$.

Transformation Formulas of *p*-adic Hypergeometric Functions

Conjecture (Transformation Formulas of *p*-adic Hypergeometric Functions)

Let $\sigma(t) = ct^{p}$ and $\widehat{\sigma}(t) = c^{-1}t^{p}$. Suppose $a^{(r)} = a$ for some r > 0. Then $\mathscr{F}_{a,...,a}^{(\sigma)}(t) = -\widehat{\mathscr{F}}_{a,...,a}^{(\widehat{\sigma})}(t^{-1})$ in the ring $W\langle t, t^{-1}, h(t)^{-1} \rangle$ where $h(t) := \prod_{i=0}^{r-1} F_{a^{(i)},...,a^{(i)}}(t)_{< p}$.

Remark

There is an involution

$$\omega: W\langle t, t^{-1}, h(t)^{-1} \rangle \longrightarrow W\langle t, t^{-1}, h(t)^{-1} \rangle, \quad \omega(f(t)) = f(t^{-1}).$$

3

A D N A B N A B N A B N

By congruence relations of $\mathscr{F}_{a}^{(\sigma)}(t)$ and $\widehat{\mathscr{F}}_{a}^{(\hat{\sigma})}(t)$, the conjecture of transformation formulas is equivalent to the statement

$$\frac{G_{\mathsf{a}}^{(\sigma)}(t)_{< p^n}}{F_{\mathsf{a}}(t)_{< p^n}} \equiv - \left. \frac{\widehat{G}_{\mathsf{a}}^{(\widehat{\sigma})}(t)_{< p^n}}{F_{\mathsf{a}}(t)_{< p^n}} \right|_{t^{-1}} \mod p^n W[[t]]$$

for all $n \in \mathbb{Z}_{\geq 0}$.

By congruence relations of $\mathscr{F}_{a}^{(\sigma)}(t)$ and $\widehat{\mathscr{F}}_{a}^{(\hat{\sigma})}(t)$, the conjecture of transformation formulas is equivalent to the statement

$$\frac{G_{\mathsf{a}}^{(\sigma)}(t)_{< p^n}}{F_{\mathsf{a}}(t)_{< p^n}} \equiv -\left.\frac{\widehat{G}_{\mathsf{a}}^{(\widehat{\sigma})}(t)_{< p^n}}{F_{\mathsf{a}}(t)_{< p^n}}\right|_{t^{-1}} \mod p^n W[[t]]$$

for all $n \in \mathbb{Z}_{\geq 0}$.

So it suffices to show that

$$\sum_{\substack{i+j=m\\0\leq i,j\leq p^n-1}} B_i A_{p^n-j-1} + \widehat{B}_{p^n-j-1} A_i \equiv 0 \mod p^n.$$

for any m with $0 \le m \le 2(p^n - 1)$.

Transformation Formulas of *p*-adic Hypergeometric Functions

Conjecture (Transformation Formulas of Dwork's *p*-adic Hypergeometric Functions)

Let I is the unique integer in $\{0, 1, \dots, p-1\}$ such that $a + I \equiv 0 \mod p$. Then for odd prime p, we have

$$\mathscr{F}^{\mathrm{Dw}}_{a,\cdots,a}(t) = ((-1)^{s}t)^{\prime} \mathscr{F}^{\mathrm{Dw}}_{a,\cdots,a}(t^{-1}).$$

For p = 2, we have

$$\mathscr{F}^{\mathrm{Dw}}_{a,\cdots,a}(t) = \pm ((-1)^{s} t)^{l} \mathscr{F}^{\mathrm{Dw}}_{a,\cdots,a}(t^{-1})$$

where \pm depends on a and s.

Theorem

Let p be an odd prime and $a \in \mathbb{Z}_p$, then we have

$$\mathscr{F}_{\mathsf{a}}^{\mathrm{Dw}}(t) = (-t)^{\prime} \mathscr{F}_{\mathsf{a}}^{\mathrm{Dw}}(t^{-1}),$$

where I is the unique integer in $\{0, 1, \dots, p-1\}$ such that $a + I \equiv 0 \mod p$.

For p = 2, we have

$$\mathscr{F}_{a}^{\mathrm{Dw}}(t) = \pm (-t)^{l} \mathscr{F}_{a}^{\mathrm{Dw}}(t^{-1}),$$

 $(+:a' \equiv 0 \mod 2; -:a' \equiv 1 \mod 2)$

By congruence relation of Dwork *p*-adic hypergeometric function, we have

$$\mathscr{F}^{\mathrm{Dw}}_{a}(t) \equiv \frac{F_{a}(t)_{< p^{n}}}{F_{a'}(t^{p})_{< p^{n}}} = \frac{(1-t)_{< p^{n}}^{-a}}{(1-t^{p})_{< p^{n}}^{-a'}} \equiv \frac{(1-t)_{< p^{n}}^{-N}}{(1-t^{p})_{< p^{n}}^{-N'}} \mod p^{n}$$

for some $N \in \mathbb{Z}_{>0}$ and $a \equiv N \mod p$.

By congruence relation of Dwork *p*-adic hypergeometric function, we have

$$\mathscr{F}^{\mathrm{Dw}}_{a}(t) \equiv \frac{F_{a}(t)_{< p^{n}}}{F_{a'}(t^{p})_{< p^{n}}} = \frac{(1-t)_{< p^{n}}^{-a}}{(1-t^{p})_{< p^{n}}^{-a'}} \equiv \frac{(1-t)_{< p^{n}}^{-N}}{(1-t^{p})_{< p^{n}}^{-N'}} \mod$$

for some $N \in \mathbb{Z}_{>0}$ and $a \equiv N \mod p$.

Here we assume p is odd (p = 2 is similar); then we obtain

$$\mathscr{F}^{\mathrm{Dw}}_{a}(t^{-1}) \equiv \left. rac{(1-t)^{-N}_{< p^{n}}}{(1-t^{p})^{-N'}_{< p^{n}}} \right|_{t^{-1}} \mod p^{n}$$

By congruence relation of Dwork *p*-adic hypergeometric function, we have

$$\mathscr{F}^{\mathrm{Dw}}_{a}(t) \equiv \frac{F_{a}(t)_{< p^{n}}}{F_{a'}(t^{p})_{< p^{n}}} = \frac{(1-t)_{< p^{n}}^{-a}}{(1-t^{p})_{< p^{n}}^{-a'}} \equiv \frac{(1-t)_{< p^{n}}^{-N}}{(1-t^{p})_{< p^{n}}^{-N'}} \mod$$

for some $N \in \mathbb{Z}_{>0}$ and $a \equiv N \mod p$.

Here we assume p is odd (p = 2 is similar); then we obtain

$$\mathcal{F}_{a}^{\mathrm{Dw}}(t^{-1}) \equiv \frac{(1-t)_{
$$\equiv \frac{(1-t)^{-N}}{(1-t^{p})^{-N'}}\bigg|_{t^{-1}}$$$$

By congruence relation of Dwork *p*-adic hypergeometric function, we have

$$\mathscr{F}^{\mathrm{Dw}}_{a}(t) \equiv rac{F_{a}(t)_{< p^{n}}}{F_{a'}(t^{p})_{< p^{n}}} = rac{(1-t)^{-a}_{< p^{n}}}{(1-t^{p})^{-a'}_{< p^{n}}} \equiv rac{(1-t)^{-N}_{< p^{n}}}{(1-t^{p})^{-N'}_{< p^{n}}} \mod$$

for some $N \in \mathbb{Z}_{>0}$ and $a \equiv N \mod p$.

Here we assume p is odd (p = 2 is similar); then we obtain

$$\mathscr{F}_{a}^{\mathrm{Dw}}(t^{-1}) \equiv \frac{(1-t)_{
$$\equiv \frac{(1-t)^{-N}}{(1-t^{p})^{-N'}}\bigg|_{t^{-1}}$$
$$= \frac{(-t)^{-pN'}}{(-t)^{-pN'}} \cdot \frac{(1-t^{-1})^{-N}}{(1-t^{-p})^{-N'}}$$$$

By congruence relation of Dwork *p*-adic hypergeometric function, we have

$$\mathscr{F}^{\mathrm{Dw}}_{a}(t) \equiv \frac{F_{a}(t)_{< p^{n}}}{F_{a'}(t^{p})_{< p^{n}}} = \frac{(1-t)_{< p^{n}}^{-a}}{(1-t^{p})_{< p^{n}}^{-a'}} \equiv \frac{(1-t)_{< p^{n}}^{-N}}{(1-t^{p})_{< p^{n}}^{-N'}} \mod$$

for some $N \in \mathbb{Z}_{>0}$ and $a \equiv N \mod p$.

Here we assume p is odd (p = 2 is similar); then we obtain

$$\begin{aligned} \mathscr{F}_{a}^{\mathrm{Dw}}(t^{-1}) &\equiv \left. \frac{(1-t)_{<\rho^{n}}^{-N}}{(1-t^{p})_{<\rho^{n}}^{-N'}} \right|_{t^{-1}} \mod \rho^{n} \\ &\equiv \left. \frac{(1-t)^{-N}}{(1-t^{p})^{-N'}} \right|_{t^{-1}} \\ &= \left. \frac{(-t)^{-pN'}}{(-t)^{-pN'}} \cdot \frac{(1-t^{-1})^{-N}}{(1-t^{-p})^{-N'}} \right. \\ &= \frac{(-t)^{-l}(1-t)^{-N}}{(1-t^{p})^{-N'}}. \end{aligned}$$

Theorem (Wang)

Transformation formulas of $\mathscr{F}_{a,\cdots,a}^{Dw}(t)$ imply transformation formulas of $\mathscr{F}_{a,\cdots,a}^{(\sigma)}(t)$ and $\widehat{\mathscr{F}}_{a,\cdots,a}^{(\hat{\sigma})}(t)$.

イロト イポト イヨト イヨト 二日

Theorem (Wang)

Transformation formulas of $\mathscr{F}_{a,\dots,a}^{Dw}(t)$ imply transformation formulas of $\mathscr{F}_{a,\dots,a}^{(\sigma)}(t)$ and $\widehat{\mathscr{F}}_{a,\dots,a}^{(\widehat{\sigma})}(t)$.

(Sketch of proof): Let us define functions $f : \mathbb{Z}_{>0} \to W$ and $\widehat{f} : \mathbb{Z}_{>0} \to W$ by

$$f(k) = \frac{B_k}{A_k}, \quad \widehat{f}(k) = \frac{B_k}{A_k}$$

イロト 不得 トイヨト イヨト 二日

Theorem (Wang)

Transformation formulas of $\mathscr{F}_{a,\dots,a}^{Dw}(t)$ imply transformation formulas of $\mathscr{F}_{a,\dots,a}^{(\sigma)}(t)$ and $\widehat{\mathscr{F}}_{a,\dots,a}^{(\widehat{\sigma})}(t)$.

(Sketch of proof): Let us define functions $f : \mathbb{Z}_{>0} \to W$ and $\widehat{f} : \mathbb{Z}_{>0} \to W$ by

$$f(k) = \frac{B_k}{A_k}, \quad \widehat{f}(k) = \frac{B_k}{A_k}.$$

Since

$$k\equiv k' \mod p^n \implies rac{B_k}{A_k}\equiv rac{B_{k'}}{A_{k'}}, \quad rac{\widehat{B}_k}{A_k}\equiv rac{\widehat{B}_{k'}}{A_{k'}} \mod p^n,$$

we can extend functions f and \hat{f} from $\mathbb{Z}_{>0}$ to \mathbb{Z}_p denoted by β and $\hat{\beta}$, respectively. We write the value of β (resp. $\hat{\beta}$) at $\lambda \in \mathbb{Z}_p$ by β_{λ} (resp. $\hat{\beta}_{\lambda}$).

Lemma

Let $\lambda \in \mathbb{Z}_p$ and $a \in \mathbb{Z}_p \setminus \mathbb{Z}_{\leq 0}$, then we have

$$\beta_{\lambda} + \widehat{\beta}_{-\lambda-a} = 0.$$

Lemma

Let $a \in \mathbb{Z}_p$, $m, k, d \in \mathbb{Z}_{\geq 0}$ with $0 \le m \le p^n - 1$ and $0 \le d \le n$.

If the transformation formula of Dwork p-adic hypergeometric function is true, then we have

$$\sum_{\substack{i \equiv k \mod p^{n-d} \\ 0 \leq i \leq m \\ i+j \equiv m}} A_i A_{p^n-j-1} - \sum_{\substack{p^n - j' - 1 \equiv -k-a \\ 0 \leq j' \leq m \\ i'+j' = m}} \operatorname{mod} p^{n-d} A_{i'} A_{p^n-j'-1} \equiv 0$$

modulo p^{d+1} .

э

(日) (四) (日) (日) (日)

Rewriting the summation

$$\sum_{\substack{i+j=m\\0\leq i,j\leq p^n-1}} B_i A_{p^n-j-1} + \widehat{B}_{p^n-j-1} A_i$$

by the relation $\beta_k = B_k/A_k$ and $\widehat{\beta}_k = \widehat{B}_k/A_k$, we obtain

$$\sum_{\substack{i+j=m\\0\leq i,j\leq m}}\beta_iA_iA_{p^n-j-1}+\sum_{\substack{i'+j'=m\\0\leq i',j'\leq m}}\widehat{\beta}_{p^n-j'-1}A_{i'}A_{p^n-j'-1}.$$

э

Rewriting the summation

$$\sum_{\substack{i+j=m\\0\leq i,j\leq p^n-1}} B_i A_{p^n-j-1} + \widehat{B}_{p^n-j-1} A_i$$

by the relation $\beta_k = B_k/A_k$ and $\widehat{\beta}_k = \widehat{B}_k/A_k$, we obtain

$$\sum_{\substack{i+j=m\\0\leq i,j\leq m}}\beta_iA_iA_{p^n-j-1}+\sum_{\substack{i'+j'=m\\0\leq i',j'\leq m}}\widehat{\beta}_{p^n-j'-1}A_{i'}A_{p^n-j'-1}.$$

Then using lemmas recursively, we obtain the result.

Rewriting the summation

$$\sum_{\substack{i+j=m\\0\leq i,j\leq p^n-1}} B_i A_{p^n-j-1} + \widehat{B}_{p^n-j-1} A_i$$

by the relation $\beta_k = B_k/A_k$ and $\widehat{\beta}_k = \widehat{B}_k/A_k$, we obtain

$$\sum_{\substack{i+j=m\\0\leq i,j\leq m}}\beta_iA_iA_{p^n-j-1}+\sum_{\substack{i'+j'=m\\0\leq i',j'\leq m}}\widehat{\beta}_{p^n-j'-1}A_{i'}A_{p^n-j'-1}.$$

Then using lemmas recursively, we obtain the result.

Corollary

Transformation formulas of $\mathscr{F}_{a}^{(\sigma)}(t)$ and $\widehat{\mathscr{F}}_{a}^{(\widehat{\sigma})}(t)$ (i.e., s = 1) are true.

Transformation Formulas – Case: s = 2

Theorem (Wang)

Let $N \ge 2$ be an integer, prime p > N and $a \in \frac{1}{N}\mathbb{Z}$ with 0 < a < 1. Let $\sigma(t) = ct^p$ and $\widehat{\sigma}(t) = c^{-1}t^p$. Then $\mathscr{F}_{a,a}^{(\sigma)}(t) = -\widehat{\mathscr{F}}_{a,a}^{(\widehat{\sigma})}(t^{-1})$

and

$$\mathscr{F}_{a,a}^{\mathrm{Dw}}(t) = t' \mathscr{F}_{a,a}^{\mathrm{Dw}}(t^{-1}).$$

A B A A B A

Transformation Formulas – Case: s = 2

Theorem (Wang)

Let $N \ge 2$ be an integer, prime p > N and $a \in \frac{1}{N}\mathbb{Z}$ with 0 < a < 1. Let $\sigma(t) = ct^p$ and $\widehat{\sigma}(t) = c^{-1}t^p$. Then $\mathscr{F}_{a,a}^{(\sigma)}(t) = -\widehat{\mathscr{F}}_{a,a}^{(\widehat{\sigma})}(t^{-1})$ and $\mathscr{F}_{a,a}^{Dw}(t) = t^{l}\mathscr{F}_{a,a}^{Dw}(t^{-1})$.

The proof of this theorem uses hypergeometric curves, their algebraic de Rham cohomology and so on ([W]).

Transformation Formulas – Case: s = 2

Theorem (Wang)

Let $N \ge 2$ be an integer, prime p > N and $a \in \frac{1}{N}\mathbb{Z}$ with 0 < a < 1. Let $\sigma(t) = ct^p$ and $\hat{\sigma}(t) = c^{-1}t^p$. Then $\mathscr{F}_{a,a}^{(\sigma)}(t) = -\widehat{\mathscr{F}}_{a,a}^{(\widehat{\sigma})}(t^{-1})$

and

$$\mathscr{F}_{a,a}^{\mathrm{Dw}}(t) = t' \mathscr{F}_{a,a}^{\mathrm{Dw}}(t^{-1}).$$

The proof of this theorem uses hypergeometric curves, their algebraic de Rham cohomology and so on ([W]).

Basic idea :

- Hypergeometric curves give *p*-adic hypergeometric functions.
- Automorphisms of hypergeometric curves give transformtation formulas of *p*-adic hypergeometric functions.

Reference

- Asakura, M.: New p-adic hypergeometric functions and syntomic regulators. arXiv:1811.03770.
- Asakura, M. and Miyatani, K.: F-isocrystal and syntomic regulators via hypergeometric functions. arXiv:1711.08854.
- Dwork, B.: *p-adic cycles*. Publ. Math. IHES, tome 37 (1969), 27-115.
- Hartshorne, R.: Algebraic Geometry. (Grad. Texts in Math. 52), Springer, 1977.
- Serre, J.-P.: Local Fields. (Grad. Texts in Math. 67), Springer, 1979.
- Chung-Hsuan, W.: Congruence relations for p-adic hypergeometric functions $\widehat{\mathscr{F}}_{a,\dots,a}^{(\sigma)}(t)$ and its transformation formula. arXiv:2001.08117
- Chung-Hsuan, W.: On transformation formulas of p-adic hypergeometric functions $\mathscr{F}_{a,\dots,a}^{(\sigma)}(t)$ and $\widehat{\mathscr{F}}_{a,\dots,a}^{(\sigma)}(t)$. arXiv:2104.14092